中央空调系统的负荷,在大多数时间里都是远远小于额定容量的,只要启动中央空调主机,水泵和风机都在50HZ电源频率下运行,也就是满负荷状态下工作,从而造成整个系统的能源利用效率低,浪费大量的能源,而且各泵长期处于高速运转状态,机械磨损大,维护费用高,使用寿命缩短。
中央空调系统示意图
节能改造原理功能
风机泵类负载:P(负载)=Q(流量)×H(扬程),当电机转速从N降至N`时,流量Q,扬程H及轴功率P的关系如下:
Q`=Q(N`/N) H`=H(N`/N)2, P`=P(N`/N)3
显然,当电机转速下降时,流量按线性关系变化,而电功率按立方关系方式变化,例如,电机功率为15KW,当其转速为原来的4/5时,耗电功率为7.68KW,即耗电为原来的51.2%,节电48.8%,从而大大节约电能。
通常在设计中,空调冷冻、 冷却水泵设计扬程和流量比实际需要的扬程和流量高出很多, 空调风机的设计供风量也比实际需要的风量大,导致电能的严重浪费,而且用户也无计可施,但利用我司节能装置可适当降低水泵电机运行频率,从而降低转速,使循环水流量恰到好处地与制冷量实时匹配,从而轻而易举地将部分电能节约下来。特别是对长年运行在日夜变化,季节变化,使用面积的变化而引起制冷量需求变化的系统,节能效果更为明显。节电率可达40% 以上。
建筑物的中央空调系统通常均按极端环境条件去计算空调负荷,即以其最大冷(热)负荷的1.1~1.5倍去确定空调主机及外围设备的额定容量。然而由于气候条件、环境温度、使用时间、空调室内人数等因数的变化,实际出现最大冷(热)负荷的时间,每年不超过10h~20h。
空调水系统和风系统
中央空调节能设备通过对空调负荷的动态跟踪,实时调节空调 水系统流量和冷却塔风机的风量,使其跟随负荷的变化而同步变化,最大限度地节省了电能的消耗。
系统控制原理
中央空调节能设备的基本原理:当空调负荷发生变化时,通过采集一组数值,经模糊运算及时调节空调主机、各泵组和风机的运行工作参数,从而改变空调主机工作状态、冷冻(热)水和冷却水流量,改变冷却塔风机的风量,确保 空调主机始终工作在效率最佳状态,使供回水和进出水温度趋于设定值。
中央空调节能设备的核心是变流量控制量。在控制器中建立了知识库、模糊控制模型和模糊运算规则,形成智能模糊制。通过采集影响空调系统的各种参数,经模糊运算,得出相应的控制参数,这些参数被送至空调主机、冷冻(热)水控制水系统、冷却水控制子系统、冷却塔控制子系统。这些子系统根据控制参数的变化,利用现代变频控制技术,改变 空调系统循环流体的流量和温度,以保证整个系统各种法度和条件下,均处于最佳工作状态,从而最终达到综合节能的目的。
产品特点
1.该装置的功率单元为低压矢量控制型变频器,其调节控制单元为工业控制计算机PLC和智能型温差控制器。具备中央计算机监控控制,利用节能装置的RS-485通讯口与上位机联机通讯,实现上位机的远程监控、数据采集、参数修改、报表输出等。
2.闭环控制:采样为温差,利用温度传感器检测出水管道和回水管道的温度,同时对两边温度进行比较之后送温差控制器,由温差控制器进行模糊处理,然后根据温度的变化自动调节水泵电机的转速。实现每秒钟自动节能控制。系统调节品质较传统调节方式大大提高,空调的舒适度得以提升,减轻运行监控人员的劳动强度。
3.开环控制:利用节能装置的模拟电位器输出信号给VVVF,由VVVF调节电机的转速。
4.信号的检测、处理和控制是采用目前最先进的全闭环温差自动控制,多项先进技术,高速16位A/D转换器,抗干扰能力极强,信号失真小,精度高。
5.应用变频技术后电机的启停实现了软启动和软停止,无骤启和骤停现象,大大降低机械和电网冲击;风机、水泵一般运行于工频频率以下,可延长水泵、风机、管件及空调设备的使用寿命,降低维护费用。
6.提高了运行安全可靠性,系统核心部件采用知名品牌产品,并设有工频运行切换系统,与系统原有调节装置构成冗余备用系统,以备故障切换运行,确保中央空调系统的正常使用。
7.安装简便,特别适用于老系统节能改造。对现有的 空调机组、管道无需进行改动,对风机水泵无特殊要求;不必增加和改动原水、风管道系统。
8.设备可以根据负载状况以5000次/秒的速率调整加在电机两端的端电压,根据负载自动调整功率,达到动态调功功能。
9.该节能装置的动态功率因数补偿功能可使无功功率近似为0,从而增大电机的有功功率,减少了无功损耗。另外,功率因数的改善还可节省很大一部分电网容量,直观的体现在水泵和风机电机温升降低,噪音降低,大大地延长设备维修周期及使用寿命,减少了设备维修费用。节能装置可提高功率因数到0.95以上。
|